

Welcome to the pysatSeasons documentation

This documentation describes the pysatSeasons module, which contains routines to
load data via pysat.Instrument objects and perform seasonal analysis routines
such as bin averaging, occurrence probabilities, and scatter plots.

	Overview

	Installation
	Prerequisites

	Installation Options

	Citation Guidelines
	pysatSeasons

	API
	Bin Averaging

	Occurrence Probability

	Scatter Plot

	pysatSeasons Examples
	Seasonal Occurrence by Orbit

	Seasonal Averaging of Ion Drifts and Density Profiles

	Guide for Developers
	Contributor Covenant Code of Conduct

	Contributing

	Short version

	Bug reports

	Feature requests and feedback

	Development

	Change Log
	[0.2.0] - 2022-08-12

	[0.1.3] - 2021-06-18

	[0.1.2] - 2020-07-29

	[0.1.1] - 2019-10-09

	[0.1.0] - 2019-10-07

Indices and tables

	Index

	Module Index

	Search Page

Overview

Seasonal analysis is one of the most common analysis performed in space science.
This package leverages pysat features to create generalized methods for
binning and averaging data, calculating occurrence probabilities
(by day or by orbit), or understanding the scatter within a data set.

Installation

The following instructions will allow you to install pysatSeasons.

Prerequisites

[image: pysatSeasons Logo, Calendar Icon with pysat logo and SEASONS at top.]
pysatSeasons uses common Python modules, as well as modules developed by and for
the Space Physics community. This module officially supports Python 3.6+.

	Common modules

	Community modules

	matplotlib

	pysat

	numpy

	

	pandas

	

	xarray

	

Installation Options

1. Clone the git repository

git clone https://github.com/pysat/pysatSeasons.git

	Install pysatSeasons:
Change directories into the repository folder and run the setup.py file.
There are a few ways you can do this:

	Install on the system (root privileges required):

sudo python3 setup.py install

	Install at the user level:

python3 setup.py install --user

	Install with the intent to develop locally:

python3 setup.py develop --user

Citation Guidelines

When publishing work that uses pysatSeasons, please cite the package and any
package it depends on that plays an important role in your analysis.
Specifying which version of pysatSeasons used will also improve the
reproducibility of your presented results.

pysatSeasons

	Klenzing, J. H., R. Stoneback, C. Spence, and A. G. Burrell. (2021).
pysat/pysatSeasons: Version 0.1.3 (v0.1.3). Zenodo. https://doi.org/10.5281/zenodo.4950172

@Misc{pysatSeasons,
 author = {Klenzing, J. H. and Stoneback, R. and Spence, C. and Burrell, A. G.},
 title = {pysat/pysatSeasons: vX.Y.Z},
 year = {2022},
 doi = {10.5281/zenodo.3475493},
 url = {https://doi.org/10.5281/zenodo.3475493},
 }

API

Bin Averaging

Instrument independent seasonal averaging routine.

Supports bin averaging N-dimensional data over 1D and 2D bin distributions.

	
pysatSeasons.avg.mean_by_day(inst, data_label)

	Calculate mean of data_label by day over Instrument.bounds.

	Parameters:

	
	inst (pysat.Instrument) – Instrument object to perform mean upon.

	data_label (str) – Data product label to be averaged.

	Returns:

	mean – Mean of data_label indexed by day.

	Return type:

	pandas.Series

Note

The range of dates to be loaded, and the cadence used to load data over
that range, is controlled by the inst.bounds attribute.

	
pysatSeasons.avg.mean_by_file(inst, data_label)

	Calculate mean of data_label by orbit over Instrument.bounds.

	Parameters:

	
	inst (pysat.Instrument) – Instrument object to perform mean upon.

	data_label (str) – Data product label to be averaged.

	Returns:

	mean – Mean of data_label indexed by start of each file.

	Return type:

	pandas.Series

Note

The range of dates to be loaded, and the cadence used to load data over
that range, is controlled by the inst.bounds attribute.

	
pysatSeasons.avg.mean_by_orbit(inst, data_label)

	Calculate mean of data_label by orbit over Instrument.bounds.

	Parameters:

	
	inst (pysat.Instrument) – Instrument object to perform mean upon.

	data_label (str) – Data product label to be averaged.

	Returns:

	mean – Mean of data_label indexed by start of each orbit.

	Return type:

	pandas.Series

Note

The range of dates to be loaded, and the cadence used to load data over
that range, is controlled by the inst.bounds attribute.

	
pysatSeasons.avg.median1D(const, bin1, label1, data_label, auto_bin=True, returnData=None, return_data=False)

	Calculate a 1D median of nD data_label over time binned by label1.

	Parameters:

	
	const (Constellation or Instrument) – Constellation or Instrument object.

	bin1 (array-like) – List holding [min, max, number of bins] or array-like containing
bin edges.

	label1 (str) – Identifies data product for bin1.

	data_label (list-like) – Strings identifying data product(s) to be averaged.

	auto_bin (bool) – If True, function will create bins from the min, max and
number of bins. If false, bin edges must be manually entered in bin1.
(default=True)

	returnData (bool or NoneType) – If True, also return binned data used to calculate the average in
the output dictionary as ‘data’, in addition to the statistical outputs.
Deprecated in favor of return_data.
(default=None)

	return_data (bool) – If True, also return binned data used to calculate the average in
the output dictionary as ‘data’, in addition to the statistical outputs.
(default=False)

	Returns:

	median – 1D median accessed by data_label as a function of label1
over the season delineated by bounds of passed instrument objects.
Also includes ‘count’ and ‘avg_abs_dev’ as well as the values of
the bin edges in ‘bin_x’. If returnData True, then binned data
stored under ‘data’ under data_label.

	Return type:

	dict

Note

The range of dates to be loaded, and the cadence used to load data over
that range, is controlled by the const.bounds attribute.

	
pysatSeasons.avg.median2D(const, bin1, label1, bin2, label2, data_label, returnData=None, auto_bin=True, return_data=False)

	Calculate 2D median of nD data_label over time and label1 label2.

	Parameters:

	
	const (pysat.Constellation or Instrument) –

	bin1 (array-like) – List holding [min, max, number of bins] or array-like containing
bin edges.

	bin2 (array-like) – List holding [min, max, number of bins] or array-like containing
bin edges.

	label1 (str) – Identifies data product for binning.

	label2 (str) – Identifies data product for binning.

	data_label (list-like) – Strings identifying data product(s) to be averaged.

	returnData (bool or NoneType) – If True, also return binned data used to calculate the average in
the output dictionary as ‘data’, in addition to the statistical outputs.
Deprecated in favor of return_data.
(default=None)

	auto_bin (bool) – If True, function will create bins from the min, max and
number of bins. If false, bin edges must be manually entered in bin*.
(default=True)

	return_data (bool) – If True, also return binned data used to calculate the average in
the output dictionary as ‘data’, in addition to the statistical outputs.
(default=False)

	Returns:

	median – 2D median accessed by data_label as a function of label1 and label2
over the season delineated by bounds of passed instrument objects.
Also includes ‘count’ and ‘avg_abs_dev’ as well as the values of
the bin edges in ‘bin_x’ and ‘bin_y’.

	Return type:

	dict

Note

The range of dates to be loaded, and the cadence used to load data over
that range, is controlled by the const.bounds attribute.

Occurrence Probability

Occurrence probability routines, daily or by orbit.

Routines calculate the occurrence of an event greater than a supplied gate
occurring at least once per day, or once per orbit. The probability is
calculated as the (number of times with at least one hit in bin) / (number
of times in the bin). The data used to determine the occurrence must be 1D.
If a property of a 2D or higher dataset is needed attach a custom function
that performs the check and returns a 1D Series.

Note

The included routines use the bounds attached to the supplied instrument
object as the season of interest.

	
pysatSeasons.occur_prob.by_orbit2D(const, bin1, label1, bin2, label2, data_label, gate, returnBins=None, return_bins=False)

	2D Occurrence Probability of data_label orbit-by-orbit over a season.

Deprecated since version 0.2.0: returnBins will be removed in v0.3.0, it is replaced by
return_bins because it has standards compliant case.

If data_label is greater than gate at least once per orbit, then a
100% occurrence probability results. Season delineated by the bounds
attached to Instrument object.
Probability = (# of times with at least one hit) / (# of times in bin)

	Parameters:

	
	const (pysat.Instrument or pysat.Constellation) – Instrument/Constellation to use for calculating occurrence probability.

	bin1 (array-like) – List holding [min, max, number of bins] or array-like containing
bin edges.

	bin2 (array-like) – List holding [min, max, number of bins] or array-like containing
bin edges.

	label1 (str) – Identifies data product for binX.

	label2 (str) – Identifies data product for binX.

	data_label (list of str) – Data product label(s) to calculate occurrence probability.

	gate (list of values) – Values that data_label must achieve to be counted as an occurrence.

	returnBins (bool or NoneType) – If True, also return arrays with values of bin edges, useful for pcolor.
Deprecated in favor of return_bins. (default=None)

	return_bins (bool) – If True, also return arrays with values of bin edges, useful for pcolor.
(default=False)

	Returns:

	occur_prob – A dict of dicts indexed by data_label. Each entry is dict with entries
‘prob’ for the probability and ‘count’ for the number of orbits with
any data; ‘bin_x’ and ‘bin_y’ are also returned if requested. Note that
arrays are organized for direct plotting, y values along rows, x along
columns.

	Return type:

	dict

Note

Season delineated by the bounds attached to Instrument object.

	
pysatSeasons.occur_prob.by_orbit3D(const, bin1, label1, bin2, label2, bin3, label3, data_label, gate, returnBins=None, return_bins=False)

	3D Occurrence Probability of data_label orbit-by-orbit over a season.

Deprecated since version 0.2.0: returnBins will be removed in v0.3.0, it is replaced by
return_bins because it has standards compliant case.

If data_label is greater than gate at least once per orbit, then a
100% occurrence probability results. Season delineated by the bounds
attached to Instrument object.
Prob = (# of times with at least one hit) / (# of times in bin)

	Parameters:

	
	const (pysat.Instrument or pysat.Constellation) – Instrument/Constellation to use for calculating occurrence probability.

	bin1 (array-like) – List holding [min, max, number of bins] or array-like containing
bin edges.

	bin2 (array-like) – List holding [min, max, number of bins] or array-like containing
bin edges.

	bin3 (array-like) – List holding [min, max, number of bins] or array-like containing
bin edges.

	label1 (str) – Identifies data product for binX.

	label2 (str) – Identifies data product for binX.

	label3 (str) – Identifies data product for binX.

	data_label (list of str) – Identifies data product(s) to calculate occurrence probability
e.g. inst[data_label].

	gate (list of values) – Values that data_label must achieve to be counted as an occurrence.

	returnBins (bool or NoneType) – If True, also return arrays with values of bin edges, useful for pcolor.
Deprecated in favor of return_bins. (default=None)

	return_bins (bool) – If True, also return arrays with values of bin edges, useful for pcolor.
(default=False)

	Returns:

	occur_prob – A dict of dicts indexed by data_label. Each entry is dict with entries
‘prob’ for the probability and ‘count’ for the number of orbits with
any data; ‘bin_x’, ‘bin_y’, and ‘bin_z’ are also returned if requested.
Note that arrays are organized for direct plotting, z, y, x.

	Return type:

	dict

Note

Season delineated by the bounds attached to Instrument object.

	
pysatSeasons.occur_prob.daily2D(const, bin1, label1, bin2, label2, data_label, gate, returnBins=None, return_bins=False)

	2D Daily Occurrence Probability of data_label > gate over a season.

Deprecated since version 0.2.0: returnBins will be removed in v0.3.0, it is replaced by
return_bins because it has standards compliant case.

If data_label is greater than gate at least once per day,
then a 100% occurrence probability results. Season delineated by the bounds
attached to Instrument object.
Probability = (# of times with at least one hit) / (# of times in bin)

	Parameters:

	
	const (pysat.Instrument or pysat.Constellation) – Instrument/Constellation to use for calculating occurrence probability.

	bin1 (array-like) – List holding [min, max, number of bins] or array-like containing
bin edges.

	bin2 (array-like) – List holding [min, max, number of bins] or array-like containing
bin edges.

	label1 (str) – Identifies data product for binX.

	label2 (str) – Identifies data product for binX.

	data_label (list of str) – Identifies data product(s) to calculate occurrence probability
e.g. inst[data_label].

	gate (list of values) – Values that data_label must achieve to be counted as an occurrence.

	returnBins (bool or NoneType) – If True, also return arrays with values of bin edges, useful for pcolor.
Deprecated in favor of return_bins. (default=None)

	return_bins (bool) – If True, also return arrays with values of bin edges, useful for pcolor.
(default=False)

	Returns:

	occur_prob – A dict of dicts indexed by data_label. Each entry is dict with entries
‘prob’ for the probability and ‘count’ for the number of days with any
data; ‘bin_x’ and ‘bin_y’ are also returned if requested. Note that
arrays are organized for direct plotting, y values along rows, x along
columns.

	Return type:

	dict

Note

Season delineated by the bounds attached to Instrument object.

	
pysatSeasons.occur_prob.daily3D(const, bin1, label1, bin2, label2, bin3, label3, data_label, gate, returnBins=None, return_bins=False)

	3D Daily Occurrence Probability of data_label > gate over a season.

Deprecated since version 0.2.0: returnBins will be removed in v0.3.0, it is replaced by
return_bins because it has standards compliant case.

If data_label is greater than gate at least once per day,
then a 100% occurrence probability results. Season delineated by
the bounds attached to Instrument object.
Probability = (# of times with at least one hit) / (# of times in bin)

	Parameters:

	
	const (pysat.Instrument or pysat.Constellation) – Instrument/Constellation to use for calculating occurrence probability.

	bin1 (array-like) – List holding [min, max, number of bins] or array-like containing
bin edges.

	bin2 (array-like) – List holding [min, max, number of bins] or array-like containing
bin edges.

	bin3 (array-like) – List holding [min, max, number of bins] or array-like containing
bin edges.

	label1 (str) – Identifies data product for binX.

	label2 (str) – Identifies data product for binX.

	label3 (str) – Identifies data product for binX.

	data_label (list of str) – Identifies data product(s) to calculate occurrence probability
e.g. inst[data_label].

	gate (list of values) – Values that data_label must achieve to be counted as an occurrence.

	returnBins (bool or NoneType) – If True, also return arrays with values of bin edges, useful for pcolor.
Deprecated in favor of return_bins. (default=None)

	return_bins (bool) – If True, also return arrays with values of bin edges, useful for pcolor.
(default=False)

	Returns:

	occur_prob – A dict of dicts indexed by data_label. Each entry is dict with entries
‘prob’ for the probability and ‘count’ for the number of days with any
data; ‘bin_x’, ‘bin_y’, and ‘bin_z’ are also returned if requested.
Note that arrays are organized for direct plotting, z, y, x.

	Return type:

	dict

Note

Season delineated by the bounds attached to Instrument object.

Scatter Plot

Support scatterplot production over seasons of interest.

	
pysatSeasons.plot.scatterplot(const, labelx, labely, data_label, datalim, xlim=None, ylim=None)

	Return 2D and 3D scatterplot of data_label over label* for a season.

	Parameters:

	
	const (pysat.Instrument or pysat.Constellation) – Instrument/Constellation to scatterplot.

	labelx (str) – Data product for x-axis.

	labely (str) – Data product for y-axis.

	data_label (str or array-like of str) – Data product(s) to be scatter plotted.

	datalim (numpy.array) – Plot limits for data_label.

	xlim (numpy.array or None.) – Array for limits along x or y axes. If None, limits
are determined automatically. (default=None)

	ylim (numpy.array or None.) – Array for limits along x or y axes. If None, limits
are determined automatically. (default=None)

	Returns:

	figs – Scatter plots of data_label as a function of labelx and labely
over the season delineated by inst.bounds.

	Return type:

	list

pysatSeasons Examples

pysat tends to reduce certain science data investigations to the construction
of a routine(s) that makes that investigation unique, a call to a seasonal
analysis routine, and some plotting commands. Several demonstrations are
offered in this section.

Seasonal Occurrence by Orbit

How often does a particular thing occur on a orbit-by-orbit basis? As an example,
let us calculate the occurrence of a positive perturbation in the meridional
component of the geomagnetic field as measured by the Vector Electric Field
Instrument (VEFI) onboard the Communication/Navigation Outage Forecasting
System (C/NOFS) satellite. The full code can be found at:
https://github.com/pysat/pysatSeasons/blob/main/demo/ssnl_occurrence_by_orbit.py

Demonstrates iterating over an instrument data set by orbit and
determining the occurrence probability of an event occurring.

import datetime as dt
import os
import matplotlib.pyplot as plt
import numpy as np

import pysat
import pysatNASA
import pysatSeasons

Ensure all pysatNASA data plugins are registered with pysat. Only needs
to be performed once per installation/upgrade.
pysat.utils.registry.register_by_module(pysatNASA.instruments)

Set the directory where the plots will be saved. Setting nothing will put
the plots in the current directory
results_dir = ''

Select C/NOFS VEFI DC magnetometer data, use longitude to determine where
there are changes in the orbit (local time info not in file)
orbit_info = {'index': 'longitude', 'kind': 'longitude'}
vefi = pysat.Instrument(platform='cnofs', name='vefi', tag='dc_b',
 clean_level=None, orbit_info=orbit_info)

Define function to remove flagged values
def filter_vefi(inst):
 idx, = np.where(inst['B_flag'] == 0)
 inst.data = inst[idx]
 return

Attach filtering function to `vefi` object.
vefi.custom_attach(filter_vefi)

Set limits on dates analysis will cover, inclusive
start = dt.datetime(2010, 5, 9)
stop = dt.datetime(2010, 5, 15)

Check if data already on system, if not, download.
if len(vefi.files[start:stop]) < (stop - start).days:
 vefi.download(start, stop)

Specify the analysis time limits using `bounds`, otherwise all VEFI DC
data will be processed.
vefi.bounds = (start, stop)

Perform occurrence probability calculation.
Any data added by custom functions is available within analysis below.
ans = pysatSeasons.occur_prob.by_orbit2D(vefi, [0, 360, 144], 'longitude',
 [-13, 13, 104], 'latitude',
 ['dB_mer'], [0.], returnBins=True)

A dict indexed by data_label is returned.
ans = ans['dB_mer']

Plot occurrence probability
f, axarr = plt.subplots(2, 1, sharex=True, sharey=True)

Mask for locations not observed.
masked = np.ma.array(ans['prob'], mask=np.isnan(ans['prob']))

Plot occurrence probability
im = axarr[0].pcolor(ans['bin_x'], ans['bin_y'], masked)
axarr[0].set_title('Occurrence Probability Delta-B Meridional > 0')
axarr[0].set_ylabel('Latitude')
axarr[0].set_yticks((-13, -10, -5, 0, 5, 10, 13))
axarr[0].set_ylim((ans['bin_y'][0], ans['bin_y'][-1]))
plt.colorbar(im, ax=axarr[0], label='Occurrence Probability')

Plot number of orbits per bin.
im = axarr[1].pcolor(ans['bin_x'], ans['bin_y'], ans['count'])
axarr[1].set_title('Number of Orbits in Bin')
axarr[1].set_xlabel('Longitude')
axarr[1].set_xticks((0, 60, 120, 180, 240, 300, 360))
axarr[1].set_xlim((ans['bin_x'][0], ans['bin_x'][-1]))
axarr[1].set_ylabel('Latitude')
plt.colorbar(im, ax=axarr[1], label='Counts')

f.tight_layout()
plt.savefig(os.path.join(results_dir, 'ssnl_occurrence_by_orbit_demo'))
plt.close()

Result

[image: _images/ssnl_occurrence_by_orbit_demo.png]
The top plot shows the occurrence probability of a positive magnetic field
perturbation as a function of geographic longitude and latitude. The bottom
plot shows the number of times the satellite was in each bin with data
(on per orbit basis). Individual orbit tracks may be seen. The hatched pattern
is formed from the satellite traveling North to South and vice-versa. At the
latitudinal extremes of the orbit the latitudinal velocity goes through zero
providing a greater coverage density. The satellite doesn’t return to the same
locations on each pass so there is a reduction in counts between orbit tracks.
All local times are covered by this plot, over-representing the coverage of a
single satellite.

The horizontal blue band that varies in latitude as a function of longitude is
the location of the magnetic equator. Torque rod firings that help C/NOFS
maintain proper attitude are performed at the magnetic equator. Data during
these firings is excluded by the custom function attached to the vefi
instrument object.

Seasonal Averaging of Ion Drifts and Density Profiles

In-situ measurements of the ionosphere by the Ion Velocity Meter onboard C/NOFS
provides information on plasma density, composition, ion temperature, and ion
drifts. This provides a great deal of information on the ionosphere though this
information is limited to the immediate vicinity of the satellite. COSMIC GPS
measurements, with some processing, provide information on the vertical
electron density distribution in the ionosphere. The vertical motion of ions
measured by IVM should be reflected in the vertical plasma densities measured
by COSMIC. To look at this relationship over all longitudes and local times,
for magnetic latitudes near the geomagnetic equator, the code excerpts below
provides a framework for the user. The full code can be found at
https://github.com/pysat/pysatSeasons/blob/main/demo/cosmic_and_ivm_demo.py

Note the same averaging routine is used for both COSMIC and IVM, and that both
1D and 2D data are handled correctly. The demo code requires pysatCDAAC > 0.0.2.

Instantiate IVM Object
ivm = pysat.Instrument(platform='cnofs', name='ivm', tag='',
 clean_level='clean')

Restrict measurements to those near geomagnetic equator.
ivm.custom_attach(restrict_abs_values, args=['mlat', 25.])

Perform seasonal average
ivm.bounds = (startDate, stopDate)
ivmResults = pysatSeasons.avg.median2D(ivm, [0, 360, 24], 'alon',
 [0, 24, 24], 'mlt',
 ['ionVelmeridional'])

Create COSMIC instrument object. Engage supported keyword `altitude_bin`
to bin all altitude profiles into 3 km increments.
cosmic = pysat.Instrument(platform='cosmic', name='gps', tag='ionprf',
 clean_level='clean', altitude_bin=3)

Apply custom functions to all data that is loaded through cosmic
cosmic.custom_attach(add_magnetic_coordinates)

Select locations near the magnetic equator
cosmic.custom_attach(filter_values, args=['edmax_qd_lat', (-10., 10.)])

Take the log of NmF2 and add to the dataframe
cosmic.custom_attach(add_log_density)

Calculates the height above hmF2 to reach Ne < NmF2/e
cosmic.custom_attach(add_scale_height)

Perform a bin average of multiple COSMIC data products, from startDate
through stopDate. A mixture of 1D and 2D data is averaged.
cosmic.bounds = (startDate, stopDate)
cosmicResults = pysatSeasons.avg.median2D(cosmic, [0, 360, 24], 'edmax_qd_lon',
 [0, 24, 24], 'edmaxlct',
 ['ELEC_dens', 'edmaxalt',
 'lognm', 'thf2'])

The work is done, plot the results!

[image: _images/ssnl_median_ivm_cosmic_1d.png]
The top image is the median ion drift from the IVM, while the remaining plots
are derived from the COSMIC density profiles. COSMIC data does not come with
the location of the profiles in magnetic coordinates, so this information is
added using the nano-kernel.

cosmic.custom_attach(add_magnetic_coordinates)

call runs a routine that adds the needed information using the community
package apexpy. Similarly, using custom functions, locations away from the
magnetic equator are filtered out and a couple new quantities are added.

There is a strong correspondence between the distribution of downward drifts
between noon and midnight and a reduction in the height of the peak ionospheric
density around local sunset. There isn’t the same strong correspondence with the
other parameters but ion density profiles are also affected by production and
loss processes, not measured by IVM.

The median averaging routine also produced a series a median altitude profiles
as a function of longitude and local time. A selection are shown below.

[image: _images/ssnl_median_ivm_cosmic_2d.png]
There is a gradient in the altitude distribution over longitude near sunset.
Between 0-15 longitude an upward slope is seen in bottom-side density levels
with local time though higher altitudes have a flatter gradient. This is
consistent with the upward ion drifts reported by IVM. Between 45-60 the
bottom-side ionosphere is flat with local time, while densities at higher
altitudes drop steadily. Ion drifts in this sector become downward at night.
Downward drifts lower plasma into exponentially higher neutral densities,
rapidly neutralizing plasma and producing an effective flat bottom. Thus, the
COSMIC profile in this sector is also consistent with the IVM drifts.

Between 15-30 degrees longitude, ion drifts are upward, but less than the
0-15 sector. Similarly, the density profile in the same sector has a weaker
upward gradient with local time than the 0-15 sector. Between 30-45 longitude,
drifts are mixed, then transition into weaker downward drifts than between
45-60 longitude. The corresponding profiles have a flatter bottom-side gradient
than sectors with upward drift (0-30), and a flatter top-side gradient than
when drifts are more downward (45-60), consistent with the ion drifts.

Guide for Developers

	Contributor Covenant Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

	Contributing

	Short version

	Bug reports

	Feature requests and feedback

	Development
	Pull Request Guidelines

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at pysat.developers@gmail.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

Contributing

Bug reports, feature suggestions and other contributions are greatly
appreciated! PysatSeasons is a community-driven project and welcomes both feedback and contributions.

Short version

	Submit bug reports and feature requests at GitHub [https://github.com/pysat/pysatSeasons/issues]

	Make pull requests to the develop branch

Bug reports

When reporting a bug [https://github.com/pysat/pysatSeasons/issues] please
include:

	Your operating system name and version

	Any details about your local setup that might be helpful in troubleshooting

	Detailed steps to reproduce the bug

Feature requests and feedback

The best way to send feedback is to file an issue at
GitHub [https://github.com/pysat/pysatSeasons/issues].

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions
are welcome :)

Development

To set up pysatSeasons for local development:

#. Fork pysat on GitHub [https://github.com/pysat/pysatSeasons/fork].
#.

Clone your fork locally:

git clone git@github.com:your_name_here/pysatSeasons.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally. Tests for new instruments are
performed automatically. Tests for custom functions should be added to the
appropriately named file in pysatSeasons/tests. For example, the averaging routines in avg.py are tested in pysatSeasons/tests/test_avg.py. If no
test file exists, then you should create one. This testing uses pytest, which
will run tests on any python file in the test directory that starts with
test_.

	When you’re done making changes, run all the checks to ensure that nothing
is broken on your local system:

pytest -vs

	Update/add documentation (in docs), if relevant

	Commit your changes and push your branch to GitHub:

git add .
git commit -m “Brief description of your changes”
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website. Pull requests should be
made to the develop branch.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code, just
make a pull request. Pull requests should be made to the develop branch.

For merging, you should:

	Include an example for use

	Add a note to CHANGELOG.md about the changes

	Ensure that all checks passed (current checks include Scrutinizer, Travis-CI,
and Coveralls) [1]

[1]
If you don’t have all the necessary Python versions available locally or

have trouble building all the testing environments, you can rely on
Travis to run the tests for each change you add in the pull request.
Because testing here will delay tests by other developers, please ensure
that the code passes all tests on your local system first.

Change Log

All notable changes to this project will be documented in this file.
This project adheres to Semantic Versioning [http://semver.org/].

[0.2.0] - 2022-08-12

	New Features

	Added support for xarray data in the seasonal averaging functions in pysatSeasons.avg

	Added support for xarray data in the occurrence probability functions in pysatSeasons.occur_prob

	Added support for Constellations in pysatSeasons.occur_prob

	Added support for Constellations in pysatSeasons.plot

	Renamed computational_form to to_xarray_dataset and refocused.

	Deprecations

	Deprecated returnBins keyword in favor of return_bins in pysatSeasons.occur_prob.

	Deprecated returnData keyword in favor of return_data in pysatSeasons.avg.

	Documentation

	Improved docstrings throughout.

	Updated documentation examples.

	Documentation now available on readthedocs.org.

	Bug Fix

	Maintenance

	Removed deprecated pandas.Panel from functions.

	Removed old __future__ imports.

	Removed use of collections.deque in pysatSeasons.avg.

	Migrated to GitHub Workflows for CI testing.

	Migrated from nose to pytest.

	Adopted setup.cfg

	Updated style standards

	Added automated style and docstring testing

[0.1.3] - 2021-06-18

	Updates style to match pysat 3.0.0 release candidate

	Improves discussion of rationale for version caps on readme page

	Migrates CI tests to github actions

[0.1.2] - 2020-07-29

	Updates demo codes to import objects from datetime and pandas for pysat 3.0.0 compatibility

	Fixed a bug where test routines used float where numpy 1.18 expects an int

	Import objects from datetime and pandas for pysat 3.0.0 compatibility

	Use conda to manage Travis CI

	Rename default branch as main

	Update to pysat documentation standards

	Add flake8 testing for code

[0.1.1] - 2019-10-09

	Add demo code

	Added DOI badge to documentation page

[0.1.0] - 2019-10-07

	Initial release

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pysatSeasons	

 	
 	
 pysatSeasons.avg	

 	
 	
 pysatSeasons.occur_prob	

 	
 	
 pysatSeasons.plot	

Index

 B
 | D
 | M
 | P
 | S

B

 	
 	by_orbit2D() (in module pysatSeasons.occur_prob)

 	
 	by_orbit3D() (in module pysatSeasons.occur_prob)

D

 	
 	daily2D() (in module pysatSeasons.occur_prob)

 	
 	daily3D() (in module pysatSeasons.occur_prob)

M

 	
 	mean_by_day() (in module pysatSeasons.avg)

 	mean_by_file() (in module pysatSeasons.avg)

 	mean_by_orbit() (in module pysatSeasons.avg)

 	median1D() (in module pysatSeasons.avg)

 	
 	median2D() (in module pysatSeasons.avg)

 	
 module

 	pysatSeasons.avg

 	pysatSeasons.occur_prob

 	pysatSeasons.plot

P

 	
 	
 pysatSeasons.avg

 	module

 	
 pysatSeasons.occur_prob

 	module

 	
 	
 pysatSeasons.plot

 	module

S

 	
 	scatterplot() (in module pysatSeasons.plot)

 nav.xhtml

 Table of Contents

 		
 Welcome to the pysatSeasons documentation

 		
 Overview

 		
 Installation

 		
 Prerequisites

 		
 Installation Options

 		
 Citation Guidelines

 		
 pysatSeasons

 		
 API

 		
 Bin Averaging

 		
 Occurrence Probability

 		
 Scatter Plot

 		
 pysatSeasons Examples

 		
 Seasonal Occurrence by Orbit

 		
 Seasonal Averaging of Ion Drifts and Density Profiles

 		
 Guide for Developers

 		
 Contributor Covenant Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

 		
 Contributing

 		
 Short version

 		
 Bug reports

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Change Log

 		
 [0.2.0] - 2022-08-12

 		
 [0.1.3] - 2021-06-18

 		
 [0.1.2] - 2020-07-29

 		
 [0.1.1] - 2019-10-09

 		
 [0.1.0] - 2019-10-07

_images/ssnl_median_ivm_cosmic_2d.png
Altitude (km) Altitude (km) Altitude (km)

Altitude (km)

Apex Longitudes 0-15

Apex Longitudes 15-30

Apex Longitudes 30-45

Apex Longitudes 45-60

18
Solar Local Time of Profile Maximum Density

W op s 000 o
[A A
Log Density

w
°

-
Hh o h o
Log Density

»
s

R
56 o b
Log Density

[
o5 &5 o b
Log Density

w
°

_images/ssnl_occurrence_by_orbit_demo.png
Latitude

Latitude

Occurrence Probability Delta-B Meridional > 0
- =

Longitude

10

0.8

0.6

0.4

02

0.0

y

Occurrence Probabil

_images/logo.png

_images/ssnl_median_ivm_cosmic_1d.png
IVM Meridional lon Drifts

24

(s/w) yuq uol
9

°
¥

g 8 e

i [e307 Jn2uBen

-30

COSMIC Log Density Maximum

Ausuag 6o
g @ o + N8 o w
6 W & w om oa T

C——es—

(i) 2pnIngy
w o v o n
88”8 &
NI

C——e——

375
350
200

COSMIC Altitude Density Maximum

g 8 ©

awiL [e207 tejog

24

247

g oy e

awiL [e207 tejog

(ut) BI3H 3[ed5
w 2w g
28 8 8 w
5 8 3 8 &

——

225
200

z
5
T
2
.
s
]
3
o
3
3
2
5
o
=
%
o
o

g 8 ©

awiL [e207 tejog

24

Apex Longitude

_static/file.png

_static/minus.png

_static/plus.png

