
pysatSeasons Documentation
Release 0.2.0-alpha

Klenzing, Jeffrey, Stoneback, Russell, Spence, Carey, Burrell, Angeline G.

Aug 31, 2022

CONTENTS

1 Overview 3

2 Installation 5
2.1 Prerequisites . 5
2.2 Installation Options . 5

3 Citation Guidelines 7
3.1 pysatSeasons . 7

4 API 9
4.1 Bin Averaging . 9
4.2 Occurrence Probability . 11
4.3 Scatter Plot . 15

5 pysatSeasons Examples 17
5.1 Seasonal Occurrence by Orbit . 17
5.2 Seasonal Averaging of Ion Drifts and Density Profiles . 20

6 Guide for Developers 25
6.1 Contributor Covenant Code of Conduct . 25
6.2 Contributing . 26
6.3 Short version . 26
6.4 Bug reports . 27
6.5 Feature requests and feedback . 27
6.6 Development . 27

7 Change Log 29
7.1 [0.2.0] - 2022-08-12 . 29
7.2 [0.1.3] - 2021-06-18 . 30
7.3 [0.1.2] - 2020-07-29 . 30
7.4 [0.1.1] - 2019-10-09 . 30
7.5 [0.1.0] - 2019-10-07 . 30

8 Indices and tables 31

Python Module Index 33

Index 35

i

ii

pysatSeasons Documentation, Release 0.2.0-alpha

This documentation describes the pysatSeasons module, which contains routines to load data via pysat.Instrument
objects and perform seasonal analysis routines such as bin averaging, occurrence probabilities, and scatter plots.

CONTENTS 1

pysatSeasons Documentation, Release 0.2.0-alpha

2 CONTENTS

CHAPTER

ONE

OVERVIEW

Seasonal analysis is one of the most common analysis performed in space science. This package leverages pysat features
to create generalized methods for binning and averaging data, calculating occurrence probabilities (by day or by orbit),
or understanding the scatter within a data set.

3

pysatSeasons Documentation, Release 0.2.0-alpha

4 Chapter 1. Overview

CHAPTER

TWO

INSTALLATION

The following instructions will allow you to install pysatSeasons.

2.1 Prerequisites

pysatSeasons uses common Python modules, as well as modules developed by and for the Space Physics community.
This module officially supports Python 3.6+.

Common modules Community modules
matplotlib pysat
numpy
pandas
xarray

2.2 Installation Options

1. Clone the git repository

git clone https://github.com/pysat/pysatSeasons.git

2. Install pysatSeasons: Change directories into the repository folder and run the setup.py file. There are a few ways
you can do this:

A. Install on the system (root privileges required):

sudo python3 setup.py install

B. Install at the user level:

5

pysatSeasons Documentation, Release 0.2.0-alpha

python3 setup.py install --user

C. Install with the intent to develop locally:

python3 setup.py develop --user

6 Chapter 2. Installation

CHAPTER

THREE

CITATION GUIDELINES

When publishing work that uses pysatSeasons, please cite the package and any package it depends on that plays an
important role in your analysis. Specifying which version of pysatSeasons used will also improve the reproducibility
of your presented results.

3.1 pysatSeasons

• Klenzing, J. H., R. Stoneback, C. Spence, and A. G. Burrell. (2021). pysat/pysatSeasons: Version 0.1.3 (v0.1.3).
Zenodo. https://doi.org/10.5281/zenodo.4950172

@Misc{pysatSeasons,
author = {Klenzing, J. H. and Stoneback, R. and Spence, C. and Burrell, A. G.},
title = {pysat/pysatSeasons: vX.Y.Z},
year = {2022},
doi = {10.5281/zenodo.3475493},
url = {https://doi.org/10.5281/zenodo.3475493},
}

7

https://doi.org/10.5281/zenodo.4950172

pysatSeasons Documentation, Release 0.2.0-alpha

8 Chapter 3. Citation Guidelines

CHAPTER

FOUR

API

4.1 Bin Averaging

Instrument independent seasonal averaging routine.

Supports bin averaging N-dimensional data over 1D and 2D bin distributions.

pysatSeasons.avg.mean_by_day(inst, data_label)
Calculate mean of data_label by day over Instrument.bounds.

Parameters

• inst (pysat.Instrument) – Instrument object to perform mean upon.

• data_label (str) – Data product label to be averaged.

Returns
mean – Mean of data_label indexed by day.

Return type
pandas.Series

Note: The range of dates to be loaded, and the cadence used to load data over that range, is controlled by the
inst.bounds attribute.

pysatSeasons.avg.mean_by_file(inst, data_label)
Calculate mean of data_label by orbit over Instrument.bounds.

Parameters

• inst (pysat.Instrument) – Instrument object to perform mean upon.

• data_label (str) – Data product label to be averaged.

Returns
mean – Mean of data_label indexed by start of each file.

Return type
pandas.Series

Note: The range of dates to be loaded, and the cadence used to load data over that range, is controlled by the
inst.bounds attribute.

9

pysatSeasons Documentation, Release 0.2.0-alpha

pysatSeasons.avg.mean_by_orbit(inst, data_label)
Calculate mean of data_label by orbit over Instrument.bounds.

Parameters

• inst (pysat.Instrument) – Instrument object to perform mean upon.

• data_label (str) – Data product label to be averaged.

Returns
mean – Mean of data_label indexed by start of each orbit.

Return type
pandas.Series

Note: The range of dates to be loaded, and the cadence used to load data over that range, is controlled by the
inst.bounds attribute.

pysatSeasons.avg.median1D(const, bin1, label1, data_label, auto_bin=True, returnData=None,
return_data=False)

Calculate a 1D median of nD data_label over time binned by label1.

Parameters

• const (Constellation or Instrument) – Constellation or Instrument object.

• bin1 (array-like) – List holding [min, max, number of bins] or array-like containing bin
edges.

• label1 (str) – Identifies data product for bin1.

• data_label (list-like) – Strings identifying data product(s) to be averaged.

• auto_bin (bool) – If True, function will create bins from the min, max and number of bins.
If false, bin edges must be manually entered in bin1. (default=True)

• returnData (bool or NoneType) – If True, also return binned data used to calculate the
average in the output dictionary as ‘data’, in addition to the statistical outputs. Deprecated in
favor of return_data. (default=None)

• return_data (bool) – If True, also return binned data used to calculate the average in the
output dictionary as ‘data’, in addition to the statistical outputs. (default=False)

Returns
median – 1D median accessed by data_label as a function of label1 over the season delineated
by bounds of passed instrument objects. Also includes ‘count’ and ‘avg_abs_dev’ as well as the
values of the bin edges in ‘bin_x’. If returnData True, then binned data stored under ‘data’ under
data_label.

Return type
dict

Note: The range of dates to be loaded, and the cadence used to load data over that range, is controlled by the
const.bounds attribute.

pysatSeasons.avg.median2D(const, bin1, label1, bin2, label2, data_label, returnData=None, auto_bin=True,
return_data=False)

Calculate 2D median of nD data_label over time and label1 label2.

10 Chapter 4. API

pysatSeasons Documentation, Release 0.2.0-alpha

Parameters

• const (pysat.Constellation or Instrument) –

• bin1 (array-like) – List holding [min, max, number of bins] or array-like containing bin
edges.

• bin2 (array-like) – List holding [min, max, number of bins] or array-like containing bin
edges.

• label1 (str) – Identifies data product for binning.

• label2 (str) – Identifies data product for binning.

• data_label (list-like) – Strings identifying data product(s) to be averaged.

• returnData (bool or NoneType) – If True, also return binned data used to calculate the
average in the output dictionary as ‘data’, in addition to the statistical outputs. Deprecated in
favor of return_data. (default=None)

• auto_bin (bool) – If True, function will create bins from the min, max and number of bins.
If false, bin edges must be manually entered in bin*. (default=True)

• return_data (bool) – If True, also return binned data used to calculate the average in the
output dictionary as ‘data’, in addition to the statistical outputs. (default=False)

Returns
median – 2D median accessed by data_label as a function of label1 and label2 over the season
delineated by bounds of passed instrument objects. Also includes ‘count’ and ‘avg_abs_dev’ as
well as the values of the bin edges in ‘bin_x’ and ‘bin_y’.

Return type
dict

Note: The range of dates to be loaded, and the cadence used to load data over that range, is controlled by the
const.bounds attribute.

4.2 Occurrence Probability

Occurrence probability routines, daily or by orbit.

Routines calculate the occurrence of an event greater than a supplied gate occurring at least once per day, or once per
orbit. The probability is calculated as the (number of times with at least one hit in bin) / (number of times in the bin).
The data used to determine the occurrence must be 1D. If a property of a 2D or higher dataset is needed attach a custom
function that performs the check and returns a 1D Series.

Note: The included routines use the bounds attached to the supplied instrument object as the season of interest.

pysatSeasons.occur_prob.by_orbit2D(const, bin1, label1, bin2, label2, data_label, gate, returnBins=None,
return_bins=False)

2D Occurrence Probability of data_label orbit-by-orbit over a season.

Deprecated since version 0.2.0: returnBins will be removed in v0.3.0, it is replaced by return_bins because it
has standards compliant case.

4.2. Occurrence Probability 11

pysatSeasons Documentation, Release 0.2.0-alpha

If data_label is greater than gate at least once per orbit, then a 100% occurrence probability results. Season
delineated by the bounds attached to Instrument object. Probability = (# of times with at least one hit) / (# of
times in bin)

Parameters

• const (pysat.Instrument or pysat.Constellation) – Instrument/Constellation to
use for calculating occurrence probability.

• bin1 (array-like) – List holding [min, max, number of bins] or array-like containing bin
edges.

• bin2 (array-like) – List holding [min, max, number of bins] or array-like containing bin
edges.

• label1 (str) – Identifies data product for binX.

• label2 (str) – Identifies data product for binX.

• data_label (list of str) – Data product label(s) to calculate occurrence probability.

• gate (list of values) – Values that data_label must achieve to be counted as an occur-
rence.

• returnBins (bool or NoneType) – If True, also return arrays with values of bin edges,
useful for pcolor. Deprecated in favor of return_bins. (default=None)

• return_bins (bool) – If True, also return arrays with values of bin edges, useful for pcolor.
(default=False)

Returns
occur_prob – A dict of dicts indexed by data_label. Each entry is dict with entries ‘prob’ for
the probability and ‘count’ for the number of orbits with any data; ‘bin_x’ and ‘bin_y’ are also
returned if requested. Note that arrays are organized for direct plotting, y values along rows, x
along columns.

Return type
dict

Note: Season delineated by the bounds attached to Instrument object.

pysatSeasons.occur_prob.by_orbit3D(const, bin1, label1, bin2, label2, bin3, label3, data_label, gate,
returnBins=None, return_bins=False)

3D Occurrence Probability of data_label orbit-by-orbit over a season.

Deprecated since version 0.2.0: returnBins will be removed in v0.3.0, it is replaced by return_bins because it
has standards compliant case.

If data_label is greater than gate at least once per orbit, then a 100% occurrence probability results. Season
delineated by the bounds attached to Instrument object. Prob = (# of times with at least one hit) / (# of times in
bin)

Parameters

• const (pysat.Instrument or pysat.Constellation) – Instrument/Constellation to
use for calculating occurrence probability.

• bin1 (array-like) – List holding [min, max, number of bins] or array-like containing bin
edges.

• bin2 (array-like) – List holding [min, max, number of bins] or array-like containing bin
edges.

12 Chapter 4. API

pysatSeasons Documentation, Release 0.2.0-alpha

• bin3 (array-like) – List holding [min, max, number of bins] or array-like containing bin
edges.

• label1 (str) – Identifies data product for binX.

• label2 (str) – Identifies data product for binX.

• label3 (str) – Identifies data product for binX.

• data_label (list of str) – Identifies data product(s) to calculate occurrence probability
e.g. inst[data_label].

• gate (list of values) – Values that data_label must achieve to be counted as an occur-
rence.

• returnBins (bool or NoneType) – If True, also return arrays with values of bin edges,
useful for pcolor. Deprecated in favor of return_bins. (default=None)

• return_bins (bool) – If True, also return arrays with values of bin edges, useful for pcolor.
(default=False)

Returns
occur_prob – A dict of dicts indexed by data_label. Each entry is dict with entries ‘prob’ for the
probability and ‘count’ for the number of orbits with any data; ‘bin_x’, ‘bin_y’, and ‘bin_z’ are
also returned if requested. Note that arrays are organized for direct plotting, z, y, x.

Return type
dict

Note: Season delineated by the bounds attached to Instrument object.

pysatSeasons.occur_prob.daily2D(const, bin1, label1, bin2, label2, data_label, gate, returnBins=None,
return_bins=False)

2D Daily Occurrence Probability of data_label > gate over a season.

Deprecated since version 0.2.0: returnBins will be removed in v0.3.0, it is replaced by return_bins because it
has standards compliant case.

If data_label is greater than gate at least once per day, then a 100% occurrence probability results. Season
delineated by the bounds attached to Instrument object. Probability = (# of times with at least one hit) / (# of
times in bin)

Parameters

• const (pysat.Instrument or pysat.Constellation) – Instrument/Constellation to
use for calculating occurrence probability.

• bin1 (array-like) – List holding [min, max, number of bins] or array-like containing bin
edges.

• bin2 (array-like) – List holding [min, max, number of bins] or array-like containing bin
edges.

• label1 (str) – Identifies data product for binX.

• label2 (str) – Identifies data product for binX.

• data_label (list of str) – Identifies data product(s) to calculate occurrence probability
e.g. inst[data_label].

• gate (list of values) – Values that data_label must achieve to be counted as an occur-
rence.

4.2. Occurrence Probability 13

pysatSeasons Documentation, Release 0.2.0-alpha

• returnBins (bool or NoneType) – If True, also return arrays with values of bin edges,
useful for pcolor. Deprecated in favor of return_bins. (default=None)

• return_bins (bool) – If True, also return arrays with values of bin edges, useful for pcolor.
(default=False)

Returns
occur_prob – A dict of dicts indexed by data_label. Each entry is dict with entries ‘prob’ for
the probability and ‘count’ for the number of days with any data; ‘bin_x’ and ‘bin_y’ are also
returned if requested. Note that arrays are organized for direct plotting, y values along rows, x
along columns.

Return type
dict

Note: Season delineated by the bounds attached to Instrument object.

pysatSeasons.occur_prob.daily3D(const, bin1, label1, bin2, label2, bin3, label3, data_label, gate,
returnBins=None, return_bins=False)

3D Daily Occurrence Probability of data_label > gate over a season.

Deprecated since version 0.2.0: returnBins will be removed in v0.3.0, it is replaced by return_bins because it
has standards compliant case.

If data_label is greater than gate at least once per day, then a 100% occurrence probability results. Season
delineated by the bounds attached to Instrument object. Probability = (# of times with at least one hit) / (# of
times in bin)

Parameters

• const (pysat.Instrument or pysat.Constellation) – Instrument/Constellation to
use for calculating occurrence probability.

• bin1 (array-like) – List holding [min, max, number of bins] or array-like containing bin
edges.

• bin2 (array-like) – List holding [min, max, number of bins] or array-like containing bin
edges.

• bin3 (array-like) – List holding [min, max, number of bins] or array-like containing bin
edges.

• label1 (str) – Identifies data product for binX.

• label2 (str) – Identifies data product for binX.

• label3 (str) – Identifies data product for binX.

• data_label (list of str) – Identifies data product(s) to calculate occurrence probability
e.g. inst[data_label].

• gate (list of values) – Values that data_label must achieve to be counted as an occur-
rence.

• returnBins (bool or NoneType) – If True, also return arrays with values of bin edges,
useful for pcolor. Deprecated in favor of return_bins. (default=None)

• return_bins (bool) – If True, also return arrays with values of bin edges, useful for pcolor.
(default=False)

14 Chapter 4. API

pysatSeasons Documentation, Release 0.2.0-alpha

Returns
occur_prob – A dict of dicts indexed by data_label. Each entry is dict with entries ‘prob’ for
the probability and ‘count’ for the number of days with any data; ‘bin_x’, ‘bin_y’, and ‘bin_z’
are also returned if requested. Note that arrays are organized for direct plotting, z, y, x.

Return type
dict

Note: Season delineated by the bounds attached to Instrument object.

4.3 Scatter Plot

Support scatterplot production over seasons of interest.

pysatSeasons.plot.scatterplot(const, labelx, labely, data_label, datalim, xlim=None, ylim=None)
Return 2D and 3D scatterplot of data_label over label* for a season.

Parameters

• const (pysat.Instrument or pysat.Constellation) – Instrument/Constellation to
scatterplot.

• labelx (str) – Data product for x-axis.

• labely (str) – Data product for y-axis.

• data_label (str or array-like of str) – Data product(s) to be scatter plotted.

• datalim (numpy.array) – Plot limits for data_label.

• xlim (numpy.array or None.) – Array for limits along x or y axes. If None, limits are
determined automatically. (default=None)

• ylim (numpy.array or None.) – Array for limits along x or y axes. If None, limits are
determined automatically. (default=None)

Returns
figs – Scatter plots of data_label as a function of labelx and labely over the season delineated by
inst.bounds.

Return type
list

4.3. Scatter Plot 15

pysatSeasons Documentation, Release 0.2.0-alpha

16 Chapter 4. API

CHAPTER

FIVE

PYSATSEASONS EXAMPLES

pysat tends to reduce certain science data investigations to the construction of a routine(s) that makes that investigation
unique, a call to a seasonal analysis routine, and some plotting commands. Several demonstrations are offered in this
section.

5.1 Seasonal Occurrence by Orbit

How often does a particular thing occur on a orbit-by-orbit basis? As an example, let us calculate the occurrence of a
positive perturbation in the meridional component of the geomagnetic field as measured by the Vector Electric Field
Instrument (VEFI) onboard the Communication/Navigation Outage Forecasting System (C/NOFS) satellite. The full
code can be found at: https://github.com/pysat/pysatSeasons/blob/main/demo/ssnl_occurrence_by_orbit.py

Demonstrates iterating over an instrument data set by orbit and
determining the occurrence probability of an event occurring.

import datetime as dt
import os
import matplotlib.pyplot as plt
import numpy as np

import pysat
import pysatNASA
import pysatSeasons

Ensure all pysatNASA data plugins are registered with pysat. Only needs
to be performed once per installation/upgrade.
pysat.utils.registry.register_by_module(pysatNASA.instruments)

Set the directory where the plots will be saved. Setting nothing will put
the plots in the current directory
results_dir = ''

Select C/NOFS VEFI DC magnetometer data, use longitude to determine where
there are changes in the orbit (local time info not in file)
orbit_info = {'index': 'longitude', 'kind': 'longitude'}
vefi = pysat.Instrument(platform='cnofs', name='vefi', tag='dc_b',

clean_level=None, orbit_info=orbit_info)

Define function to remove flagged values
(continues on next page)

17

https://github.com/pysat/pysatSeasons/blob/main/demo/ssnl_occurrence_by_orbit.py

pysatSeasons Documentation, Release 0.2.0-alpha

(continued from previous page)

def filter_vefi(inst):
idx, = np.where(inst['B_flag'] == 0)
inst.data = inst[idx]
return

Attach filtering function to `vefi` object.
vefi.custom_attach(filter_vefi)

Set limits on dates analysis will cover, inclusive
start = dt.datetime(2010, 5, 9)
stop = dt.datetime(2010, 5, 15)

Check if data already on system, if not, download.
if len(vefi.files[start:stop]) < (stop - start).days:

vefi.download(start, stop)

Specify the analysis time limits using `bounds`, otherwise all VEFI DC
data will be processed.
vefi.bounds = (start, stop)

Perform occurrence probability calculation.
Any data added by custom functions is available within analysis below.
ans = pysatSeasons.occur_prob.by_orbit2D(vefi, [0, 360, 144], 'longitude',

[-13, 13, 104], 'latitude',
['dB_mer'], [0.], returnBins=True)

A dict indexed by data_label is returned.
ans = ans['dB_mer']

Plot occurrence probability
f, axarr = plt.subplots(2, 1, sharex=True, sharey=True)

Mask for locations not observed.
masked = np.ma.array(ans['prob'], mask=np.isnan(ans['prob']))

Plot occurrence probability
im = axarr[0].pcolor(ans['bin_x'], ans['bin_y'], masked)
axarr[0].set_title('Occurrence Probability Delta-B Meridional > 0')
axarr[0].set_ylabel('Latitude')
axarr[0].set_yticks((-13, -10, -5, 0, 5, 10, 13))
axarr[0].set_ylim((ans['bin_y'][0], ans['bin_y'][-1]))
plt.colorbar(im, ax=axarr[0], label='Occurrence Probability')

Plot number of orbits per bin.
im = axarr[1].pcolor(ans['bin_x'], ans['bin_y'], ans['count'])
axarr[1].set_title('Number of Orbits in Bin')
axarr[1].set_xlabel('Longitude')
axarr[1].set_xticks((0, 60, 120, 180, 240, 300, 360))
axarr[1].set_xlim((ans['bin_x'][0], ans['bin_x'][-1]))
axarr[1].set_ylabel('Latitude')
plt.colorbar(im, ax=axarr[1], label='Counts')

(continues on next page)

18 Chapter 5. pysatSeasons Examples

pysatSeasons Documentation, Release 0.2.0-alpha

(continued from previous page)

f.tight_layout()
plt.savefig(os.path.join(results_dir, 'ssnl_occurrence_by_orbit_demo'))
plt.close()

Result

The top plot shows the occurrence probability of a positive magnetic field perturbation as a function of geographic
longitude and latitude. The bottom plot shows the number of times the satellite was in each bin with data (on per
orbit basis). Individual orbit tracks may be seen. The hatched pattern is formed from the satellite traveling North to
South and vice-versa. At the latitudinal extremes of the orbit the latitudinal velocity goes through zero providing a
greater coverage density. The satellite doesn’t return to the same locations on each pass so there is a reduction in counts
between orbit tracks. All local times are covered by this plot, over-representing the coverage of a single satellite.

The horizontal blue band that varies in latitude as a function of longitude is the location of the magnetic equator. Torque
rod firings that help C/NOFS maintain proper attitude are performed at the magnetic equator. Data during these firings
is excluded by the custom function attached to the vefi instrument object.

5.1. Seasonal Occurrence by Orbit 19

pysatSeasons Documentation, Release 0.2.0-alpha

5.2 Seasonal Averaging of Ion Drifts and Density Profiles

In-situ measurements of the ionosphere by the Ion Velocity Meter onboard C/NOFS provides information on plasma
density, composition, ion temperature, and ion drifts. This provides a great deal of information on the ionosphere
though this information is limited to the immediate vicinity of the satellite. COSMIC GPS measurements, with some
processing, provide information on the vertical electron density distribution in the ionosphere. The vertical motion
of ions measured by IVM should be reflected in the vertical plasma densities measured by COSMIC. To look at this
relationship over all longitudes and local times, for magnetic latitudes near the geomagnetic equator, the code excerpts
below provides a framework for the user. The full code can be found at https://github.com/pysat/pysatSeasons/blob/
main/demo/cosmic_and_ivm_demo.py

Note the same averaging routine is used for both COSMIC and IVM, and that both 1D and 2D data are handled correctly.
The demo code requires pysatCDAAC > 0.0.2.

Instantiate IVM Object
ivm = pysat.Instrument(platform='cnofs', name='ivm', tag='',

clean_level='clean')

Restrict measurements to those near geomagnetic equator.
ivm.custom_attach(restrict_abs_values, args=['mlat', 25.])

Perform seasonal average
ivm.bounds = (startDate, stopDate)
ivmResults = pysatSeasons.avg.median2D(ivm, [0, 360, 24], 'alon',

[0, 24, 24], 'mlt',
['ionVelmeridional'])

Create COSMIC instrument object. Engage supported keyword `altitude_bin`
to bin all altitude profiles into 3 km increments.
cosmic = pysat.Instrument(platform='cosmic', name='gps', tag='ionprf',

clean_level='clean', altitude_bin=3)

Apply custom functions to all data that is loaded through cosmic
cosmic.custom_attach(add_magnetic_coordinates)

Select locations near the magnetic equator
cosmic.custom_attach(filter_values, args=['edmax_qd_lat', (-10., 10.)])

Take the log of NmF2 and add to the dataframe
cosmic.custom_attach(add_log_density)

Calculates the height above hmF2 to reach Ne < NmF2/e
cosmic.custom_attach(add_scale_height)

Perform a bin average of multiple COSMIC data products, from startDate
through stopDate. A mixture of 1D and 2D data is averaged.
cosmic.bounds = (startDate, stopDate)
cosmicResults = pysatSeasons.avg.median2D(cosmic, [0, 360, 24], 'edmax_qd_lon',

[0, 24, 24], 'edmaxlct',
['ELEC_dens', 'edmaxalt',
'lognm', 'thf2'])

The work is done, plot the results!

20 Chapter 5. pysatSeasons Examples

https://github.com/pysat/pysatSeasons/blob/main/demo/cosmic_and_ivm_demo.py
https://github.com/pysat/pysatSeasons/blob/main/demo/cosmic_and_ivm_demo.py

pysatSeasons Documentation, Release 0.2.0-alpha

The top image is the median ion drift from the IVM, while the remaining plots are derived from the COSMIC density
profiles. COSMIC data does not come with the location of the profiles in magnetic coordinates, so this information is
added using the nano-kernel.

5.2. Seasonal Averaging of Ion Drifts and Density Profiles 21

pysatSeasons Documentation, Release 0.2.0-alpha

cosmic.custom_attach(add_magnetic_coordinates)

call runs a routine that adds the needed information using the community package apexpy. Similarly, using custom
functions, locations away from the magnetic equator are filtered out and a couple new quantities are added.

There is a strong correspondence between the distribution of downward drifts between noon and midnight and a reduc-
tion in the height of the peak ionospheric density around local sunset. There isn’t the same strong correspondence with
the other parameters but ion density profiles are also affected by production and loss processes, not measured by IVM.

The median averaging routine also produced a series a median altitude profiles as a function of longitude and local
time. A selection are shown below.

22 Chapter 5. pysatSeasons Examples

pysatSeasons Documentation, Release 0.2.0-alpha

There is a gradient in the altitude distribution over longitude near sunset. Between 0-15 longitude an upward slope
is seen in bottom-side density levels with local time though higher altitudes have a flatter gradient. This is consistent
with the upward ion drifts reported by IVM. Between 45-60 the bottom-side ionosphere is flat with local time, while

5.2. Seasonal Averaging of Ion Drifts and Density Profiles 23

pysatSeasons Documentation, Release 0.2.0-alpha

densities at higher altitudes drop steadily. Ion drifts in this sector become downward at night. Downward drifts lower
plasma into exponentially higher neutral densities, rapidly neutralizing plasma and producing an effective flat bottom.
Thus, the COSMIC profile in this sector is also consistent with the IVM drifts.

Between 15-30 degrees longitude, ion drifts are upward, but less than the 0-15 sector. Similarly, the density profile in
the same sector has a weaker upward gradient with local time than the 0-15 sector. Between 30-45 longitude, drifts are
mixed, then transition into weaker downward drifts than between 45-60 longitude. The corresponding profiles have a
flatter bottom-side gradient than sectors with upward drift (0-30), and a flatter top-side gradient than when drifts are
more downward (45-60), consistent with the ion drifts.

24 Chapter 5. pysatSeasons Examples

CHAPTER

SIX

GUIDE FOR DEVELOPERS

6.1 Contributor Covenant Code of Conduct

6.1.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body size,
disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic
status, nationality, personal appearance, race, religion, or sexual identity and orientation.

6.1.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

25

pysatSeasons Documentation, Release 0.2.0-alpha

6.1.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

6.1.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

6.1.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team
at pysat.developers@gmail.com. All complaints will be reviewed and investigated and will result in a response that is
deemed necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with
regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

6.1.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at https://www.
contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq

6.2 Contributing

Bug reports, feature suggestions and other contributions are greatly appreciated! PysatSeasons is a community-driven
project and welcomes both feedback and contributions.

6.3 Short version

• Submit bug reports and feature requests at GitHub

• Make pull requests to the develop branch

26 Chapter 6. Guide for Developers

mailto:pysat.developers@gmail.com
https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/faq
https://github.com/pysat/pysatSeasons/issues

pysatSeasons Documentation, Release 0.2.0-alpha

6.4 Bug reports

When reporting a bug please include:

• Your operating system name and version

• Any details about your local setup that might be helpful in troubleshooting

• Detailed steps to reproduce the bug

6.5 Feature requests and feedback

The best way to send feedback is to file an issue at GitHub.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that code contributions are welcome :)

6.6 Development

To set up pysatSeasons for local development:

#. Fork pysat on GitHub. #.

Clone your fork locally:

git clone git@github.com:your_name_here/pysatSeasons.git

1. Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally. Tests for new instruments are performed automatically. Tests for
custom functions should be added to the appropriately named file in pysatSeasons/tests. For example, the
averaging routines in avg.py are tested in pysatSeasons/tests/test_avg.py. If no test file exists, then you
should create one. This testing uses pytest, which will run tests on any python file in the test directory that starts
with test_.

2. When you’re done making changes, run all the checks to ensure that nothing is broken on your local system:

pytest -vs

3. Update/add documentation (in docs), if relevant

4. Commit your changes and push your branch to GitHub:

git add . git commit -m “Brief description of your changes” git push origin name-of-your-bugfix-or-
feature

5. Submit a pull request through the GitHub website. Pull requests should be made to the develop branch.

6.4. Bug reports 27

https://github.com/pysat/pysatSeasons/issues
https://github.com/pysat/pysatSeasons/issues
https://github.com/pysat/pysatSeasons/fork
mailto:git@github.com

pysatSeasons Documentation, Release 0.2.0-alpha

6.6.1 Pull Request Guidelines

If you need some code review or feedback while you’re developing the code, just make a pull request. Pull requests
should be made to the develop branch.

For merging, you should:

1. Include an example for use

2. Add a note to CHANGELOG.md about the changes

3. Ensure that all checks passed (current checks include Scrutinizer, Travis-CI, and Coveralls)1

have trouble building all the testing environments, you can rely on
Travis to run the tests for each change you add in the pull request.
Because testing here will delay tests by other developers, please ensure
that the code passes all tests on your local system first.

1 If you don’t have all the necessary Python versions available locally or

28 Chapter 6. Guide for Developers

CHAPTER

SEVEN

CHANGE LOG

All notable changes to this project will be documented in this file. This project adheres to Semantic Versioning.

7.1 [0.2.0] - 2022-08-12

• New Features

– Added support for xarray data in the seasonal averaging functions in pysatSeasons.avg

– Added support for xarray data in the occurrence probability functions in pysatSeasons.occur_prob

– Added support for Constellations in pysatSeasons.occur_prob

– Added support for Constellations in pysatSeasons.plot

– Renamed computational_form to to_xarray_dataset and refocused.

• Deprecations

– Deprecated returnBins keyword in favor of return_bins in pysatSeasons.occur_prob.

– Deprecated returnData keyword in favor of return_data in pysatSeasons.avg.

• Documentation

– Improved docstrings throughout.

– Updated documentation examples.

– Documentation now available on readthedocs.org.

• Bug Fix

• Maintenance

– Removed deprecated pandas.Panel from functions.

– Removed old __future__ imports.

– Removed use of collections.deque in pysatSeasons.avg.

– Migrated to GitHub Workflows for CI testing.

– Migrated from nose to pytest.

– Adopted setup.cfg

– Updated style standards

– Added automated style and docstring testing

29

http://semver.org/

pysatSeasons Documentation, Release 0.2.0-alpha

7.2 [0.1.3] - 2021-06-18

• Updates style to match pysat 3.0.0 release candidate

• Improves discussion of rationale for version caps on readme page

• Migrates CI tests to github actions

7.3 [0.1.2] - 2020-07-29

• Updates demo codes to import objects from datetime and pandas for pysat 3.0.0 compatibility

• Fixed a bug where test routines used float where numpy 1.18 expects an int

• Import objects from datetime and pandas for pysat 3.0.0 compatibility

• Use conda to manage Travis CI

• Rename default branch as main

• Update to pysat documentation standards

• Add flake8 testing for code

7.4 [0.1.1] - 2019-10-09

• Add demo code

• Added DOI badge to documentation page

7.5 [0.1.0] - 2019-10-07

• Initial release

30 Chapter 7. Change Log

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

31

pysatSeasons Documentation, Release 0.2.0-alpha

32 Chapter 8. Indices and tables

PYTHON MODULE INDEX

p
pysatSeasons.avg, 9
pysatSeasons.occur_prob, 11
pysatSeasons.plot, 15

33

pysatSeasons Documentation, Release 0.2.0-alpha

34 Python Module Index

INDEX

B
by_orbit2D() (in module pysatSeasons.occur_prob), 11
by_orbit3D() (in module pysatSeasons.occur_prob), 12

D
daily2D() (in module pysatSeasons.occur_prob), 13
daily3D() (in module pysatSeasons.occur_prob), 14

M
mean_by_day() (in module pysatSeasons.avg), 9
mean_by_file() (in module pysatSeasons.avg), 9
mean_by_orbit() (in module pysatSeasons.avg), 9
median1D() (in module pysatSeasons.avg), 10
median2D() (in module pysatSeasons.avg), 10
module

pysatSeasons.avg, 9
pysatSeasons.occur_prob, 11
pysatSeasons.plot, 15

P
pysatSeasons.avg
module, 9

pysatSeasons.occur_prob
module, 11

pysatSeasons.plot
module, 15

S
scatterplot() (in module pysatSeasons.plot), 15

35

	Overview
	Installation
	Prerequisites
	Installation Options

	Citation Guidelines
	pysatSeasons

	API
	Bin Averaging
	Occurrence Probability
	Scatter Plot

	pysatSeasons Examples
	Seasonal Occurrence by Orbit
	Seasonal Averaging of Ion Drifts and Density Profiles

	Guide for Developers
	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Our Responsibilities
	Scope
	Enforcement
	Attribution

	Contributing
	Short version
	Bug reports
	Feature requests and feedback
	Development
	Pull Request Guidelines

	Change Log
	[0.2.0] - 2022-08-12
	[0.1.3] - 2021-06-18
	[0.1.2] - 2020-07-29
	[0.1.1] - 2019-10-09
	[0.1.0] - 2019-10-07

	Indices and tables
	Python Module Index
	Index

